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A general algorithm of evaluation of the coefficients of molecular integrals 
(coupling constants) appearing in the direct configuration interaction method 
is derived. The configurations are assumed to be spin-adapted antisymmetrized 
products of orthonormal orbitals. No limitation is imposed either upon the 
reference state (the number of the singly occupied orbitals may be arbitrary) 
or upon the excitation multiplicity. 
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1. Introduction 

Trends towards using in the configuration interaction (CI) method as long expan- 
sions as possible stimulate search of efficient methods of constructing the wave- 
functions. A method formulated by Roos [1], and then developed by Roos and 
Siegbahn [2-4], known as the Direct CI method from Molecular Integrals (CIMI), 
seems to be most attractive. The wavefunction {r, ~ [ ~F) of an N-electron system is 
expressed as a superposition of Configuration State Functions (CSFs), (r, ~ [ k), 

M 

(r, ~ ] tF) = ~ Ok(r, a I k), (1) 
h : = o  

where r and ~ stand collectively for all space (rl, r2 . . . . .  rN) and spin (al, % . . . . .  
oN) coordinates, respectively. It is convenient to take the CSFs as Spin Adapted 
Antisymmetrized Products (SAAPs) of orthonormal orbitals 91, ~o2, . . - ,  ~K. 
Matrix elements Hkz = (k[o~~ of a Hamiltonian 

N N 

i = 1  i < f  

may then be expressed as linear combinations of integrals 

[pq] = (~%(,1)*/;~(rl)~.(rl) d~ (3) a 
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and 

t �9 
[Pq Irs] = J ~pp(rl)*~0r(r~)*/~2(rl, rz)~q(r~)%(r2) dvlz. (4) 

In the CI procedure the vector C = (Co, CI , . . . ,  CM} and the corresponding 
eigenvalue of the Hamiltonian matrix are obtained from a diagonalization proce- 
dure. Efficient iteration methods, recently formulated by Nesbet [5], Shavitt [6], 
and Davidson [7], all have a bottleneck in common: one must construct the 
Hamiltonian matrix H and then, in each iteration, multiply it by the vector: 

M 

b~"+ l) = ,~o Hk'C~")' (5) 

where (n + l) and (n) refer to the iteration number. All the other steps in the itera- 
tion scheme require negligible time [7]. The CIMI method is, in fact, a method of 
finding the product vector b (~ + 1) ___ (b~o~ + 1), b~ + 1), . . . ,  b~ + 1)) without the con- 
struction of the matrix H~z, but directly from the list of the integrals (3) and (4). 
The formula (5) may be rewritten as: 

M 

= Al(kl;pq) 
p q  / = 0  

M 

+ ~ [pqlrs] ~ A~(kl;pqrs)C~ ~', (6) 
p q r s  l = 0 

where the coupling constants Al(kl; pq) and A2(kl; pqrs) are defined by the relation 

gk~ = ~ Al(kl; pq)[pq] + ~ Az(kl; pqrs)[pq [rs], (7) 
p q  p q r s  

According to (6) every integral has to be multiplied by the sum of products of the 
coupling constants A~ or A2 and the components of the vector C r and then added 
to the appropriate component of the vector b r Hence, a single reading of the 
list of the integrals allows us to compute the vector b C~+~) without the time- and 
memory-consuming construction of the Hamiltonian matrix. 

In the original formulation of the CIMI method [l] the coupling constants are 
given in a tabular form. It restricts an applicability of the method to the case of 
tk) being at most doubly excited relatively to a closed-shell reference configuration. 
In order to generalize the computational scheme one has to formulate an algorithm 
of evaluation of the coupling constants. Since most of the coupling constants are 
equal 0, the problem to solve is: given p, q (or p, q, r, s) find k and I for which A1 
(kI; pq) (or A2(kl; pqrs)) do not vanish and determine their values. The aim of the 
present paper is to derive a general algorithm of evaluation of the coupling con- 
stants for an arbitrary set of configurations 1. 

i An effective alternative method has recently been formulated by Shavitt [8]. In the Shavitt's 
method some graph theoretical concepts have been introduced to the unitary group approach 
developed by Paldus [9], resulting in a simple diagrammatical procedure for evaluation of the 

coupling constants, 
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2. Wavefunction 

Usually the CSFs are expressed as linear combinations of Slater determinants. 
However, as shown by Ruedenberg and Salmon [10] and by Karwowski [11], a 
more compact and general formulation is possible, when CSFs are chosen as 
SAAPs, i.e. 

(r, a ] k)  - (r, a ] SM, m; A) = O d [ ( a  [ s m ,  m ) ( r [  A)], (8) 

where 

~ r  1 
e(~)~  (9) 

is the antisymmetrization operator (~  is an operator of permutation of the electron 
coordinates and e(~) its parity), (~ ] SM, rn) is an eigenfunction of 5 ~2 and 5P, 
depending on the spin coordinates only, ( r[  A) is the orbital part, and D is a 
normalization constant. 

The orbital function has the form 

N 

(r [ A) = ]--[ ~oa,(r,). (10) 
i=1  

Index A is an abbreviation for the set {A1, A2 . . . . .  AN} and describes the electronic 
configuration corresponding to a given CSF. In an electronic configuration A 
there are, in general, pa singly and (N - pa)/2 doubly occupied orbitals. A doubly 
occupied orbital appears twice in the product. We shall use the name single for a 
singly occupied orbital, double for a doubly occupied one, and virtual for an 
unoccupied orbital. In the case of singles the indices of the orbitals are designated 
sa(sal, s~ . . . .  ), in the case of doubles dA(dal, d'~ . . . .  ), and in the case of virtuals 
va(vA1, v~ . . . .  ). If  there is no risk of confusion, the subscript A is omitted. In the 
product (10) we always place singles in front of doubles. Moreover, the orbitals 
forming a double are adjacent in (10). 

The spin functions (a  I SM, rn) are eigenfunctions of the 5 p2 and 5z z operators 
belonging to the eigenvalues S(S + l) and M respectively. Index m distinguishes 
different states with the same S,M quantum numbers. As known [12], m = 1, 2, 
�9 . . f ( S ,  N), where f (S,  N) = (2S + 1)N!/(N/2 + S + 1)! (N/2 - S)!, and the 
vectors ]SM, m) form a basis for an irreducible representation of the permutation 
group, i.e. 

f (S ,  17) 

~ [  SM, rn) = e(~) ~ Uff(~),m ! SM, m), (11) 
7Z=1 

where Ug(~) is the irreducible representation matrix. It is convenient to choose an 
orthonormal set of the functions. The Ug matrices are then unitary. Moreover, in 
the following we assume that the parts of (~ ] SM, m) corresponding to doubly 
occupied pairs form two-electron singlets. Both Yamanouchi-Kotani [12] and 
Serber [13] spin functions fulfill this condition. Then, for a given A, there are only 
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f ( S ,  pa) independent spin functions. If  ~ s  denotes a permutation operator acting 
on the electrons occupying singles in (10), then 

<SM, nIC"ISM, m) = ~(~")U~(~).m, (12) 

m , n  = 1,2 . . . . .  f ( S , p ) - ~ f ,  

where U](~  ~) = [ U f ( ~ 0 y  s. The symbol [U~] u '  denotes the rectangular f x f '  
matrix being a part of the Us u matrix and consisting of the elements of its first f 
rows a n d f '  columns. 

3. Configuration State Functions 

One of the configurations we define as the reference configuration. The corres- 
ponding CSF vector is designated ISM, m; 0>, and its orbital part [0>. It is con- 
venient to number orbitals according to their positions in (v I 0), i.e. in such a 
way that So = 1 ,2  . . . . .  p, do = p + 1, p + 2 . . . .  , (N + p)/2, and vo = (N + p)/  
2 + 1, (N  + p)/2 + 2 . . . . .  K, where So, do, and Vo refer, respectively, to the 
singles, doubles and virtuals. The orbital function (r  I 0) is then: 

p (N+~)/2 

( r  l 0) = I ~  ~s(s) 1"-[ r - p - 1)q~a(2d - p), (13) 
S = I  d = p + l  

where ~o(k) - ~0(r~). 

An arbitrary configuration may be considered as an excitation from the reference 
state. The corresponding orbital function has the form: 

IA) = ~ I 0), (14) 

where ~ =  [ia Jb ke " i i ]  is a replacement  operator which puts the orbitals 

~ ,  9~b, ~0c, . . .  in place of c&, q~j, cpk . . . .  respectively, and Y'a is a permutation 
operator rearranging the electron coordinates in such a way that all the singles 
stand in front of the doubles in 4.r [ A). A ~'x permutation always exists, however it 
is not unique. The explicit form o f ~ ,  irrelevant for the present discussion, may be 
determined for each particular case in a way being the most convenient from the 
point of view of an implementation of the method. 

tn order to define 97~ in a unique way we require the orbitals to appear in each row 
of~ta in ascending order of their occupation numbers in [0) and, within a group of 
the orbitals with the same occupation number, in ascending order of their indices, 
i.e. 

~ = [ S o ~  so2 "'" So~ do~ do2 ' "  do,] (15) 
�9 . t S p . , . S t o n J  ' LVol You " V0m Sol 02 

L~O1 ~< VO2 ~ ' ' "  <.  YOre ,  S01 < 3 o 2  < ' "  < S O ~ ,  

S~l < S '  - ' -  ' 02 < <So~, do1 <~ doz <~"" <~ doz. 

If do, = do,~+l, i = 1, 2, . . . ,  l - 1, then do, corresponds to the first electron from 
the double and do.,+~ to the second one. Moreover, so~ # Soj for i = 1, 2, . . .1 k; 
j =  1,2 . . . .  ,n .  Ofcourse,  k + l =  m + n .  
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The formulae (8), (9), and (14) yield 

[SM, m; A) = D(N!) -1/2 E e ( ~ ) ( ~  [ SM, m ) ) ( ~ a ~ ,  [ 0), 

or substituting ~ for ~ a  

[SM, m; A) = D(Nt)-I/~ E e ( ~ ) ( ~  I SM, m))~  I ~ )  , 

where 

I ~ >  = ~ l o>. 
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(16) 

(17) 

(18) 

4. Matrix Elements 

A matrix element between two CSFs (17) is" 

(SM, m; h [ ~ [ SM, m'; ,V) 

= DD' ~ e ( ~ a ~ , ) ( S M  , m ] ~ a ~ ,  ] SM, m')(~a [ ~Jt~ I ,~a,). 

(19) 

Making use of (12) we may rewrite (19) in the form: 

H ~" = DD' ~ [ U ~ ' ( ~ a : ~ , ) l H ' ( ~ a  [ ~ [ ~a ' )  (20) 

whe re f  = f(S, p), f '  = f(S, p'), and H aa' is the appropriate part of the H matrix. 
The integral over space variables may be transformed as follows [11]: 

( ~  [ ~ ' ~  [ ~ ' )  = ( ~ - 1 ~  [ ~ [ ~ ,  ) = ( j ~  l a e l  ~ , )  (21) 

where ~ is an operator acting on the orbital indices rather than on the electron 

coordinates and (r 1 - ~ )  is the orbital product in which the orbital indices have 
been properly permuted. Since ~ contains only one- and two-electron terms, then 

due to orthogonality of the orbitals, the integrals (21) vanish unless [ ~ )  and 
1,~,) differ by two or less orbitals. 

The permutation which brings orbitals of I~a) into maximum coincidence with 

orbitals of [Na,) we denote ~R. It is an identity operator except the cases when both 
in ~ and in ~a, there are excitations to the same orbital from different orbitals. 

The permutation ~R may be easily expressed as a product of  cycles when ~ and 
~A, are given. For example, if 

o .... c : ]  
. X . . . y 0  .Z. 

and 

z 
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t h e n  

--  ~ ) ~ L h ) ,  

where (jcj,j~) is a cycle andj~ is the consecutive number of the electron described by 
~a in the product (13), i.e. 

a, if a=So~, i =  1,2 . . . . .  k; i.e. i fa~<p,  

j a =  2 a - p - 1 ,  if a=do~  and i =  1, or doir 
i = 2 , 3 , . . . , l ,  

2a p,  if a=do~  and d0~=do,~-l, i = 2 , 3 , . . . , I .  

We assumed here that when only one electron is excited from a double then it is the 
first electron. The permutation 

~0 = ~ a ~ '  (22) 

is identical with the line-up permutation defined by Ruedenberg and Salmon [10] 
and with the reference permutation introduced by Karwowski [11]. 

Let n(p) and n'(p)  be the occupation numbers of the orbital % in (r I A) and in 

(r [ )t') respectively. The number of orbitals by which the functions (r [ ~ and 
(r t ~a ')  differ is equal to 

0 --- g In(p) - n ' (p ) l .  (23) 
p=l  

Since the orbitals form an orthonormal set and only one- and two-electron opera- 
tors appear in the Hamiltonian (2), the matrix elements (20) vanish unless p = 
2, 1, 0. After some algebra ([10], [11]) we obtain: 

1. p = 2 .  

Let, respectively, % and % be the orbitals which in (r I~NA) occupy the same 
positions as % and % in (r [ Na,). For our purposes it is convenient to individualize 
three cases: 

a) The indices p, q, r, s are all different. The formula (20) yields 

Haa" = 2~{[U~(~)lrr '[pq l rs I + [U~(~) l t t ' [p s  l rq]} (24) 

where 

u = (n(p) + n(r) + n'(q) + n'(s))/2 - 2 (25) 

and 

= ~ a ( k , k , ) ~ . ~  + (26) 

with k~ and k ,  respectively, equal to the consecutive numbers of the electrons 
described by % and ~, in (r I ~a). 

b) E i the rp=  r a n d q ~ s o r p ~ r a n d q = s .  Inthiscase 

1t  ~" = 2" -  iI2[U~(~o)lrr I rs]. (27) 
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c) Both p = r and q = s. Then 

Haa' = [Ug(~o)YrLoq I Pq]. (28) 

2. p = l  

Let ~% occupy the same position in (r I ~ a )  as ~ in <r ] ~^'>. Then from (20) 
results 

Haa" = 2 t 
m = l  

(m C: p,rn C: q) 

n(m){[U~(~o)]'r[pq l mm] + [Ug(~)]tr[pm [ mq]} 

+ 2t[Ug(~)lrr{[pq] + n(q)[pq 1 qq] + (n(p) - 1)[pq [ pp]), (29) 

where 

t = (n(p) + n'(q))/2 - 1 (30) 

and 

~2 = ~ a ( k p k , . ) ~ v .  (31) 

3. p = O  

In this case (r]  ~ >  = <rl ~ . >  and 

K 

H ~ = ~ n(l)n(m){[mm I ll] + [U~s(~(klkm)~)]II[ml[ lm]} 
l < ra 

K 

+ ~ n(m){[mm] + �89 - 1)[mm ] mm]}. (32) 
m = l  

As it is seen, in order to determine the matrix elements of ~ ,  only the blocks 
[Uffy r corresponding to single transpositions, to ~0, and to the permutations 
and ~o, being composed of ~o and a transposition, are needed. The blocks may 
either be constructed directly for each permutation [10] or obtained by a matrix 
multiplication of the U] matrices (12) corresponding to transpositions, constructed 
in advance and stored in the computer memory [11]. In both the cases an advance 
reduction of [UsN(~)] rl to U~(~ ~) greatly simplifies the numerical work. An algo- 
rithm for this kind of reduction is given in Refs. [11] and [12]. 

5. Two-Electron Integrals 

We assume that all the two-electron integrals (4) are real. The case when they are 
complex may be treated in a slightly modified way. The two-electron integrals may 
be divided into 5 groups: 

1. All the indices p, q, r, s are different. The integrals of this group couple configura- 
tions differing by two orbitals. The matrix element (24) is always a combination of 
two integrals: [pqlrs] and [pslrq]. Therefore it is convenient to group these 
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integrals into pairs. Since/~2(rl, r2) is Hermitean and symmetric in electron coordi- 
nates, the following relations hold: 

[Pq [ rs] = [rs I Pq] ~ [qP I sr] = [sr ] qp]. (33) 

Hence, among 4! = 24 integrals corresponding to a given set of four different 
orbitals, only 6 are different: 

Jl (pqrs)  = [pq [ rs], J~(pqrs) = [ps [ rq], 

J2(pqrs) = [pr l sq], J~(pqrs) = [Pq l st], (34) 

Ja(pqrs) = [ps l qr], J~(pqrs) = [pr I qs], 

where J, and J~ appear in the same matrix element. In the following we use the 
symbols J~, J'~, i = l, 2, 3, if we refer to an arbitrary integral belonging to the set of 
4 identical ones, while [pq [rs] denotes a specific integral. 

A very important special case is when the orbitals are real and/;2(r1, r2) is a function 
of the electron coordinates. Then J1 = J~, J2 = J~ and J8 = J~. 

There are many distributions of the orbitals ~%, ?q, %, ~0s in the configurations 
(r [ h) and (r  I h') leading to a coupling of these configurations by a pair of 
J~(pqrs), J~(pqrs) integrals. To choose one of the distributions we assume that 
(r I h) is the parent configuration for ~% and for %, and (r I ~') for cpq and for %. 
Moreover, let n'(q)  <~ n'(s), n(p)  <~ n(r) and let ~o line up ~% with ~q and % with 
%. It means that ~0 places singles (doubles) of (r I ~) at the positions occupied by 
singles (doubles) in (r ! h') whenever it is possible. Since all the orbitals, except 
~%, ~q, %, ~%, are the same in both configurations, the occupation numbers fulfill 
the following equations: 

n(p)  - n ' (p)  = n(r) - n'(r) = 1 

n(q) - n '(q) = n(s) - n'(s) = - 1 .  (35) 

Finally we set (r [ h) to be the configuration in which the number of singles is not 
greater than in (r I ;~'). It means that 

n(p)  + n(r) <~ n'(q) + n'(s). (36) 

The system of Eqs. (35) together with the conditions imposed upon n and n' gives 
6 different sets of the occupation numbers of~%, ~0q, %, % in the configurations which 
may be coupled by the pair of [pq I rs] and [ps I rq] integrals, with [pq [ rs] being 

the one which in Eq. (24) is multiplied by [U~(~)] It .  All these sets are collected in 
Table 1 (entries Nos. 1-6). There exists a simple correspondence between the sets of 
the occupation numbers and the configuration pair diagrams defined in [11] or the 
cases considered by Sarma and Rettrup [14]. The references are given in the last 
two columns in Table 1. 

2. Two o f  the indices are equal. For a given set of the indices there are 4!/2 = 12 
integrals. Due to relations 

J~(pqps) = J~(pqps) = [pq I ps] = [ps ] pq] = [qp [ sp] = [sp 1 qP] 

J2(pqps) = J~(pqps) = [pp ] qs] = [qs [ pp] = [pp [ sq] = [sq I PP] (37) 

Ja(pqps) = J~(pqps) = [qp I ps] = [ps I qP] = [sp I Pq] = [Pq I sp] 
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Table 1. Occupation numbers of ~,, ~ ,  ~, and w~ in the case of p = 2 

No. n(p) n(r) n'(q) n'(s) n'(p) n'(r) n(q) n(s) DNo. '~ CNo. b 

1 1 1 1 1 0 0 0 0 1 A9 
2 1 1 1 2 0 0 0 1 7 A10 
3 1 1 2 2 0 0 1 1 11 A12 
4 1 2 1 2 0 1 0 1 3 A l l  
5 1 2 2 2 0 1 1 1 9 AI3 
6 2 2 2 2 l l 1 1 6 A14 

7 2 - -  1 1 0 - -  0 0 8 A8 
8 2 - -  1 2 0 - -  0 1 4,5 A7 
9 2 - -  2 2 0 - -  1 1 10 A6 

10 2 - -  2 - -  0 - -  0 - -  2 A5 

Diagram number according to Ref. [11]. 
b Case number according to Ref. [14]. 

only  3 o f  them are  different. The integral  J~ couples conf igurat ions  differing by  two 
orbi tals ,  accord ing  to fo rmula  (27), while bo th  J2 and  Ja appea r  in the same matr ix  
e lement  (29), for  conf igurat ions  differing by one orbi tal .  

Let  us cons ider  a pa i r  o f  conf igurat ions  coupled  by  a [pqlps]  integral .  Since 
n(p) = 2, n'(p) = 0 and we assume that  n(q) <~ n(s), only 3 different sets o f  the 
occupa t ion  numbers  o f % ,  ~0q, and  q~ in ( r  ] A) and  in ( r  ] A') are  possible.  They are 
collected in Table  1, entr ies Nos.  7-9. The same occupa t ion  numbers  o f  ~% and  q~ are 

a l lowed in the case o f  [pp I qs] and [qp [ psi integrals.  However  n(p) = n'(p) = 1, 2 
in this case. 

3. Two pairs o f  equal indices. There  are 4 !/4 = 6 integrals  for  a given set of  indices:  

Jx(PqPq) = J~(PqPq) = [Pq l Pq] = [qP t qP] 

J2(PqPq) = J~(pqpq) = [Pp [ qq] = [qq I PP] (38) 

J3(PqPq) = J~(pqpq) = [qp ] pq] = [Pq l qP]. 

The integrals  Jt(pqpq) couple  conf igurat ions  differing by  two orbi ta ls  (28) with 

n(p) = n'(q) = 2, n'(p) = n(q) = 0 (Table 1, entry No. 10), while J2(PqPq) and  
J3(PqPq) may  couple  only two identical  conf igurat ions  ( formula  (32)) with n(p) = 
n'(p) = 1, 2 and  n(q) = n'(q) = 1, 2. 

4. Three indices are equal. F o r  a given set of  indices one may  form four  in tegrals :  

[Pq l qq] = [qP [ qq] = [qq l Pq] = [qq [ qP]. (39) 

The  [pq I qqJ integral  couples two configurat ions  differing by  one orbi ta l  (according  
to fo rmula  (29)) if  n(q) = 1, n'(q) = 2, n(p) = 1, 2, and  n'(p) = n(p) - 1. 

5. All the indices are equal. The integral  [pp ] pp] appears  only in d iagonal  elements 
o f  H, coupl ing  two identical  conf igurat ions  for  which n(p) = 2. 

6.  T h e  C o u p l i n g  C o n s t a n t s  

In  order  to evaluate  the coupl ing  constants ,  first o f  all the pairs  o f  conf igurat ions  

which may  be coupled  by the [pq t rs] integral  mus t  be determined.  It means  tha t  
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we have to find the operators ~z  and ~A, leading to the configurations Z and •' in 
which the occupation numbers of ~%, q~q, %, % satisfy conditions derived in the 
previous section. In general, in a list of integrals, only one representative of a set of 
equivalent integrals J~(pqrs) is included. Therefore we shall extend the Table 1 in 
order to take into account all the configurations which may be coupled by any of  
the integrals belonging to the set. 

Since t h e / / m a t r i x  (7) is Hermitean, we assume that the configurations forming a 
pair coupled by J~(pqrs) integral are always put in a definite order. If px :/: Pz,, 
then in the matrix element H aA', we set ~ to be the configuration for which the 
number of singles is greater. Ifpa = pa,, but n(p) ~ n'(p), then ~ is the configuration 
for which the occupation number of q~ is greater. If  pa = px, and n(p) = n'(p), 
but n(q) ~ n'(q) then )~ is the configuration, for which the occupation number of ~o 
is greater. 

It is convenient to introduce a permutation operator ~s acting on the orbital indices 
in an integral. In the case of all the indicesp, q, r, s different, the relation (33) may be 
rewritten in the form: 

J1 = [12] 34] = (13)(24)[12[ 34] = (12)(34)[12 I 34] = (14)(23)[12 I 34] 

and similarily 

J~ = (24)J1, J2 = (234)J~, J~ = (34)J1, J3 = (432)J1, J~ = (23)Ja. 

The indices 1, 2, 3, 4 are used here instead of p, q, r, s for simplicity of the notation 
and correspond to four arbitrary orbitals. Then, the occupation numbers of ~ ,  ~o2, 
~8, ~04 in the configurations coupled by, say, the [34112] = (13)(24)[12134] 
integral may be obtained transposing the indices of the orbitals in Table 1. The 
distributions of the occupation numbers in configurations which may be coupled 
by the pair of integrals Ja(pqrs) and J'a(pqrs), according to Eq. (24), are collected in 
Table 2. In the second column the permutation ~ defining the two-electron integral 
is given. The occupation numbers corresponding to the cases of p~ = pa, and 
n(p) < n'(p) are given in parentheses. Now the coupling constants may be obtained 

according to formulae (24)-(26), if u, ~ = ~ . ,  and ~ = ~ ( k x k ~ ) ~ ,  are 
known. The permutations ~x, ~ , ,  and ~R are easy to derive from ~ and ~a,. The 
transpositions (kxku) and the values of u are given in Table 2. In a similar way 
the sets of the occupation numbers which determine configurations coupled by the 
pairs of integrals Jz(pqrs), J;~(pqrs) and J3(pqrs), J~(pqrs) may be obtained. 

In the case of integrals with one pair of equal indices, as a result of a similar con- 
sideration, we obtain 4 different sets of the occupation numbers if the configurations 
are coupled according to Eq. (27), i.e. by J~(pqps), and 8 sets if they are coupled 
according to Eq. (29) by the pairs ofJ2(pqps), J3(pqps) integrals. All these sets and 

(k~kp) transpositions determining ~ = ~A(k~kp)~R~" (compare (31)) as well as 
the values of  u and t are collected in Table 3. 

If there are two pairs of equal indices in an integral, then Jx(pqpq) couples configura- 
tions according to (28), while J~(pqpq) and Ja(pqpq) couple according to (32). The 
occupation numbers for these cases are displayed in Table 4. In the same table the 
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Table 2. Occupation numbers of ~ ,  ~ ,  % and ~ in configurations coupled by the integrals 
Jl(pqrs) and J~(pqrs) 

No. ~j  n(p) n(q) n(r) n(s) n'(p) n'(q) n'(r) n'(s) (k~ku) u 

1 dr, (13)(24) 1 0 1 0 0 1 0 1 (kpk,) 0 
(12)(34), (14)(23) (0 1 0 1) (1 0 1 O) 

Y 1 0 1 1 0 1 0 2 (kvkr) 
(12)(34) 0 1 1 1 1 0 2 0 (kqk,) 112 
(13)(24) t 1 1 0 0 2 0 1 (k~,kf) 
(14)(23) 1 1 0 1 2 0 1 0 (kqk~) 

dr, (13)(24) 1 1 1 1 0 2 0 2 (kpkr) 1 
(12)(34), (14)(23) 1 1 1 1 2 0 2 0 (k~k~) 

d r 1 0 2 1 0 1 1 2 (k~k~) 
(12)(34) (0 1 I 2) (1 0 2 1) 

1 (13)(24) 2 1 1 0 1 2 0 1 (kpkT) 
(14)(23) (1 2 0 1) (2 t 1 0) 

Y 1 1 2 1 0 2 1 2 (k~kO 
(12)(34) 1 1 l 2 2 0 2 I (kqk~) 
(13)(24) 2 1 t 1 1 2 0 2 (k~kr) 3[2 
(14)(23) 1 2 1 1 2 1 2 0 (kqk~) 

dr, (13)(24) 2 1 2 1 1 2 1 2 (kvk,) 2 
(12)(34), (14)(23) (1 2 1 2) (2 1 2 1) 

occupation numbers and the values of t for the case of three equal indices and for 
the case of coupling by one-electron integrals (Eq. (29)) are given. If  all the indices 
are equal, then either n(p) = n ' (p)  = 2 (if the configurations are coupled by [pp ] pp]) 
or n(p) = n'(p)  = 1, 2 (if they are coupled by [pp]). 

Now we have to find 9~ A operators leading to configurations for which occupation 
numbers of certain orbitals are as given in Tables 2, 3 and 4. Let no(p) be the 
occupation number of % in (r  [ 0). Then the absolute value of 

A(p)  = n(p) -- no(p) (40) 

Table 3. Occupation numbers of ~p, ~q and % in configurations coupled by 
J~(pqps), i = 1, 2, 3 

n(p) n(q) n(s) n'(p) n'(q) n'(s) (kxkv) i u t 

0 1 1 2 0 0 
2 0 1 0 1 2 
2 1 0 0 2 1 
2 1 1 0 2 2 

1 1 0 1 0 1 
2 1 0 2 0 1 
1 2 1 1 1 2 
2 2 1 2 1 2 
1 I 1 1 0 2 
2 1 1 2 0 2 

1 1 1 1 2 0 
2 1 1 2 2 0 

I 

(kqkp) 

2,3 

1 
3/2 
3/2 
2 

0 
0 
1 
t 
1/2 
1/2 

1/2 
1/2 
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Table 4, Occupation numbers 
byd'~(pqpq),J/pqqq), i = 1, 2, 3, and by [pq] 

of q~ and ~oa in configurations coupled 

n(p) n(q) n'(p) n'(q) integral t 

2 0 0 2 Jx(pqpq) 

1 1 1 1 
1 2 1 2 
2 1 2 I J2(PqPq), J3(PqPq) 

2 2 2 2 

1 1 0 2 
2 1 1 2 J~(pqqq), i = 1, 2, 3 

1 0 0 1 
1 1 0 2 
1 1 2 0 [Pq] 
2 1 1 2 

1/2 
1 
0 
1/2 
1/2 
1 

is equal to the number of times the index p appears in ~ 'a - in  the upper row if 
A(p) > 0 and in the lower one if A(p) < 0. Similar conditions are fulfilled for all the 
other orbitals involved in the integral under consideration. All the other symbols in 
~a  may be arbitrary, limited only by the list of orbitals and by the maximum 
multiplicity of excitations taken into account. When both ~ and ~a, are deter- 
mined, then we may easily obtain #R and ~0, 4 ,  ~2. In this way we have the 
complete information needed to evaluate the coupling constants and to assign them 
to appropriate pairs of configurations. 

7. Remarks on an Implementation of  the Method 

The problems connected with an eff• programing of the CIMI method may be 
divided into two groups: searching for interacting configurations when a two- 
electron integral is given, and calculating the coupling constant for a given pair 
of configurations. Although an optimum solution of the problems depends on 
specific features of  the available computer (size of  the core store, cost of  the CPU 
time vs. cost of the memory occupancy, efficiency and cost of using tapes, etc.), we 
can formulate some general remarks on an implementation of the presented 
algorithm. 

7.1. Searching f o r  Interacting Configurations 

The configurations which may be coupled by a given two-electron integral are 
determined by the operators ~z  and ~ , .  In the case of  an m-fold excited configura- 
tion the operator is defined by 2m orbital indices. Some of the indices (at most 4) 
enter the two-electron integral and, for a given integral, are fixed. The remaining 
indices, being the same in both ~/a and ~ , ,  and determined by the conditions 
specified in Tables I-4, are varied to accomplish the list of configurations. In the 
existing programs for the direct CI method (a review has recently been given by 
Roos [15]) only doubly excited configurations are allowed and, in consequence, at 
most two indices are varied. It means that in the program each integral is associated 
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with at most  one double loop over the orbital indices. An  analogous procedure may  
also be applied in the present generalization, except that  interactions of  m-fold with 
m'-fold excited configurations lead, in the case o f  p = 2, to at most  (m + m'  - 2)- 
fold loops over the orbital indices. An  example o f  the loop structure for  the case 
No.  1, Table 2, and for  doubly excited configurations was recently discussed by 
R o o s  [15]. 

7.2. Calculation o f  the Coupling Constants 

In  order to make the procedure o f  evaluation of  the coupling constants very 
efficient, most  of  the representation matrices [US(~)]  r1' should be kept in the core 
memory.  I f  the maximum number  o f  singles does not  exceed 6, the representation 
matrices are at mos t  9 x 9 (for triplets). The required storage is then 9 • 9 x 6 ! = 
58320 double precision words, what  seems rather unreasonable. However,  all the 
elements o f  the representation matrices are square roots o f  simple fractions and 
one may keep all the different numbers  met in the representation matrices in a 
small auxiliary array. Then, instead of  the elements o f  U s one may store their 
addresses in the auxiliary array as half-word integers. The necessary storage may be 
further reduced if symmetry properties o f  the matrices are taken into account. 
The simplest ones result f rom identities: (kl) ~ = (kl), ((kl)(ln)) t = (ln)(kl), etc., 
and reduce the necessary storage by factor  2. It  gives a reasonable amount  of  60 
kbytes o f  the core store for triplets with at most  6 singles. In order to deal with 
cases involving a larger number  of  singles one may store only some matrices, e.g. 
the ones corresponding to single transpositions and to products o f  two transposi- 
tions. Since products  o f  more than two transpositions are needed relatively seldom, 
the corresponding matrices may be generated by matrix multiplications. 
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